
UDC 62-50 

OPTIMAL ESTIMATES OF THE STATE OF A SYSTEM AND CERTAIN 

PROBLEMS OF CONTROL BY EQUATIONS WITH TIME LAG 
PMM Vol. 41, N=” 3, 1977, pp. 446-456 

v. I$ KOLMANOVSKII and T. L. MAIZ~SERG 

(Moscow) 
(Received October 6, 1976) 

Problems of filtration and of inter- and extrapolation are considered in the case 

when the observed and the nonobserved components of a process are defined by 
linear stochastic differential equations with time lag, Analysis of such problems 

is reduced with the use of the principle of duality [l] to that of controllable sys- 

tems with time lag. Optimal control of these is synthesized, conditions of ex- 
istence and uniqueness of solutions of the Bellman equation are established, and 
exact solutions of the latter are presented. 

A solution of the problem of extrapolation is readily obtained from that of the prob- 
lem of filtration, while the analysis of that of interpolation is similar to the problem of 

filtration [Z]. Because of this we only present the proof of formulas of optimal filtration 
and indicate the modifi~a~o~ that are necessary to these in their application to extra- 

and interpolation. 
Let us assume that the Ito system of stochastic differential equations 

dx tt) - {A (8) 5 (t) + B (t)z (t -- &)) & + o, (t) (2~~ ct) 
o<t<T, X($)=0, s<o, “(o):-2” 

(1.1) 

defines some nonobserved random proces, (t) and that the observable process y (t) 

satisfies the relationship 

dY (t) = lg (1) x (t - h,) -t- k (t) 5 (t - &)I dt + G, (t) d&(t) (la 2, 

Y (0) = 0 
where T > 0 is an arbitrary fixed instant of time and 5 (t)belongs to an n-dimension- 
al Euclidean space and E,, a y(t)E. The elements of matricesA (t) g(t), k (t), 01 

(t)? and 0;. (Ir> are assumed to be piece-wise continuous functions, and the elements 
of matrix B(t) to be piece-wise differentiable, The random vector 10 is independent 

of the mutually independent multidimensional standard Wiener processes Et ft) and Es 
(t) and has normal d~tribution with zero mathematical expectation and correlation 

matrix H. The dimensions of vectors El and Es are arbitrary. Matrix N, (t) = os 

(t1 0%’ (t) 1s uniformly positive definite on [(), 2‘1 and the prime indicates transposi- 

tion. The constants hl, hs,and h, are nonnegative and h, \r hs. 

Note that systems of form (1. l), (1.2) are considered here only for Simplicity of no- 
tation. The whole of the further reasoning is valid for equations with Several discrete 

and, also, distributed time-lag. 
On the stated assumptions the existence and uniqueness of solution of Eq. (I.11 is that 

given in [3]. We denote by m(~) D(T) respectively, the conditional mathematical 

expectation and the correlation m&ix of the random vectorx (~~with condition @ 

(t), 0 < t 6;. T. 1t is shown in [3] thatm(T)is the best estimate, in the sense of the 
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square mean, of ~~~~~and~ (F)& the correlation matrix of vector z fT) - m CT). 
The exp~es~ions for m (Q andD (2’) represent formulas of OWnal filtWi~% 

We introduce in the analysis n vectors ai (t> E g, (i ‘= 1, 2,. . ., n) a- 
ch of which is determined along segment 10, 2’1 by the solution of the system of 

equations 

ai’ (t) = - A’@) @y(t) - B’(t + h&xi (t -I- h,) + gyt _t (1*3J 
b,) =i (fi + &J + k’ (f + h,) 112 (f + h,f 

in which the controj ni (t) must minimise along the trajectories of system (X.3) the qu- 

adratic functional 

Problem (f.3), (1.4) is solved for the following initial conditions: ai (8) = 0 
when t > T, the 2 -th compon~t of vector ai (2’) is equal unity and all re- 
maining are zero: ui (t) = 0 when t > T. 

It is furthermore assumed thatg (t), g (r) and k (t) are zero outside of segment 

ro, 2% 
Note that the equation of filtration when g (~1 = 6 and system (X.3), (L 4f do- 

es not, actually, contain any timelag in the control, were obtained in [4]. An essential 
feature of problem (1.31, (1.4) considered here is the presence of timelag in phase co- 
ordinates and in the control, which obviously is interesting in itself. 

We denote by mz (T)the i -th component of vector m (T)and by dij (T) the el- 
ements of matrix D (j’); i,j = 1,2,, . ,) n, Then, using the modified Kalman’s 
principle of duality between the control and observation [I], for systems with timelag 
appearing in c43 we conclude that 

where M is the symbol of ma~emati~a~ expectation, 
Note that the principle of duality between the control and observation was develo- 

ped in [5, S] in a minimax formulation for ordinary systems, and in (71 for systems wi- 
th timelag. 

To determine the remaining elements dii (T) it is sufficient to solve the op- 
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timal problem (1,3), f1.4) by selecting as initiaf conditions at t = T vectors ai 
(T) whose ij -th components are unity and the remaining are zero. 

Thus the construction of the optimal filter on the basis of (1.4) and (1.5) is reduced 

to the analysis of the control problem (1.3), (1.4). Let us carry out some simplifying 
transformations in (1.3) and (X.4). We substitute variables t --+ ?’ - t. Then retain- 

ing previous notation for all functions and omitting subscript -i, we obtain 

ijl (t) = A’ (T - t) a (t) + B’ (T - t + h,) a (t - h,) - 0.6) 
g’ fT - i! + hs) u (t - Is& -k k’ (T - t -t- h,) u (t - h,) 

The initial conditions of problem (l* 61, (I. 7) for t < 0 are, obviously, the same 
as the corresponding conditions of problem (X.3), (1.4) when t > T. We further as- 

sume that in (1.6) the matrix A (t) 5 0. This can alwavs be obtained by the substitu- 
tion of variables a (tj -+ z (0, Q a (t), where z (s, t) is the fundamental solution 
of system (1.6) when B ft) s 0, g (tf s 0 and k frf f 0. As the resuft of this and so- 
me simple transformations system (1.6) can be presented in the form 

ct.(t) = B (t) c1 (t - h,) + g (9 u (t) + k (t) u (t - h) Cl* 8) 

The quality criterion retains its previous form (X.7), and the parameters of problem (1. 
7). fl. 8) are readily expressed in terms of relationships of the input control problem (1. 

6(, (1.71, as described above. 
Problem (1.81, (1.7) is solved for initial conditions cr, = a (T) (z < O>, U = 

b fr>,* (r < 0); where tT (z) and b (r) are some measurable bounded functions. 

The reasoning and the methods used here in the analysis of this problem are in several 

instances similar to those used in [S], Hence in further synthesis we shall dwell only on 

distinctive features, Note that the ~tab~shme~t of the necessary conditions of optimal- 
ity of systems with timelag in the control was dealt in [9-U.]. 

We denote by V,, (t, a, a (t -I- z), u (t + p)) the minimum value of functional 

G9f 

y @, a* a @ + 21, 
T 

E (r+ p)) = d (2-J Ha (T) -F_ 

j [u’(S)~*(sfu(S)fa’(s)Ns(S)a(s)lds 

where ct*~~(t); a(t+& r~(t+~)(---h\<f<O, --h.,<@\(o) are 
segments of the trajectory of system (1.7) and the control in intervals (t - !ZI, t> 

and (8 - h, t) respectively. It can be shown [X2] that if functionals Fr are con- 

sidered to be functions of form ZJ (t, a), it is sufficient for the determination of optim- 
al values of the functional of the criterion of quality and control to solve the Bellman 
equation 



which specif&3 strch sy~~~~ in the form of a ~~ct~ona~ of 8.x obtafned trrtjecto:ow and 
control. Note that equality (1.12) represents the Volterra integral equation in Ua (Q. 
Hence by determining from it 4~ (t) by conventional procedures it is possible to ob- 
tain the optimal controF in the form of a ~~ct~~a~ that depends only on phase coordi- 
nates, 

~omhjn~ng (1,9)-(X. 12) and using the method of ~de~rm~natc coeff~c~~~* for 
the det~~nat~on of the unwon functions Pi we ohtaln the system of equations in 
partial derivative 

P,” 01 f r-l, (G 01 4- P,’ fC 0) c iv* (8) r= P, (8) g (8) +- (1. I31 
ps & W N1-f PI E&z’ IQ & (t) + PQ’fG 011 
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I a 
( a 1 P.2 (t, s) $- Ps(t, 0, s) = at--& 

IPl @f g @I + p4 (6 (91 Ar1-1 (q k’ 0) & (k s) + pgl f& s, (91 

( 

a a 
----- 
at 

a ) P3 (t, s, s1) = 

IFi (t&t?+ P5(k $3 011 ~~-l(~) W(f) P‘a(k Sl) -I- &p, $1, O)J 

(Y&Y.ik) P4(& r> + 1'5(G 0, 79 = 

[P1(9g(t) -I- P4@7 OH Nl-l(o k'@> P4@t e 4 Ps@, 0, r)l 

( 

a a 
--__-- 
dt ds II, ) P5(& 8, r) = 

IPd (4 s)g(O + p (t 5 , s, o)l Nl-'@) [g'(f)P4(t, r) -t p6 (t, 0, r)] 

i 

a a a 
-_--- 
at ar 8r, > 

P6 (& Tr 1^1) = 

IP41(4 I^) g CL) + ps (4 I”, 011 NI-ltt) Is’(t) P4(k h) + Pgf (k )*l, ($1 

O<t<T, - h, < s, s1 < 0, -h,(r, r,<O 

The system of boundary conditions is obtained in the same way. For any It,(s, 

Sl =G 0, -h < r, and rl < 0. 

P, (T) = ET, P, (T, 3) = P, (T, s, SJ = P4 (T, r) = (1.14) 

P, (T, s, I^) = PB (T, r, r1) = 0 

P, (t) k(t) - P4 (t, - h) = 0 
k’ (t) P, (t, s) - P,’ (t, s, -h) = 0 
B’ (t) P, (t) - P,’ (t, -h,) = 0 
2s (t) P, (t, s) - P, (tg- h,, s) - P,’ (t, s, -h,) = 0 
B’ (t) Pa (t, r) - P, (t, -h,, r) = 0 
2k’ (t) P4 (t, r) - P6 (t, - h, r) - Pa’ (t, r, AL) = 0 

(1.15) 

Thus, when the optimal value of functional (1.9) is of the form (1.11) and coeffic- 

ients pi are reasonably smooth, these functions represent (almost everywhere) the un- 
ique solution of problem (I. 13)-( 1.15). Conversely, if there exists a solution of problem 
(1.13)-( X.15) it is unique for almost all values of arguments and determines the optim- 
al control, the system trajectory and the optimal value of the quality criterion by form- 

ulas (1.8). (1. IA), and (1.12). 
Proof of the existence of the solution of the system of Eqs. (1.13)-( 1.15) is carried 

out by establishing the algorithm of successive approximations which was proposed for 

other problems in [X2]. 

Let 2.h1 = 241 (t) (the first approximation of the optimal control) satisfy for t > 
0 the relation 
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where matrices ‘II (t>, q? (t, 3) and qa (t, r) ~zre bounded functi~XB pieoeWiPi$e continu- 

0123~ ~ff~ren~able with respect to L, 8, and r ; % t-4 = 0 (a); whenT<O 

ad r@ (z) is some specified measurable bounded ‘function, and a, (9 is the sohr- 
tion of (1.8) when u = ul. Let us take two arbitrary instants of time t, and s, with 

s > f and establish the formula for expressing CI, (a), and UI (s) in terms of c1r 
(Q, and u1 (T) for +r Q t, For this we shall consider formulas (X,8) and (1.16) as a 

system of la -+ 1 equations for the determination of IZ + 1 components of vector 

r (@ = tat @), Ux ($f). It is not difficult to see that solutions of that system are the 
same as the solutions of the system formed by (1.8) and the equation of the form 

(1. x71 

%ttt -&h(t---h) + [ [$---$]q&, s)al(t-+-s)ds+ 
-hi 

0 

S[ q3 (4 r) 7.b (t -J- r) dr 
-4 

which is obtained by differentiating term by term the right- and the left-hand sides of 
( 1.16). 

The boundary conditions for (1.1’7) are of the form 

Combining (1.8) and (1.17) we obtain an ordinary system of n + I differenrlat;;llla- 
lions with the deflecting argument . 

where % = A. Matrices C (t> and Di (t) are defined by the coeMicients of (1.8), 
(1.16), and (I. 17) as follows: 

j/ 

0 
c(t) = 

g(t) 

41’(d) -f- qa Pt 0) 41(0g(Q + 43 (6 0) 

B(t) 0 
&W = 



Using formulas (1, 2Of we effect the substitution a (8) r= a, (s) and 

u (S) . ; UT (s) in the right-hand side of fl. 9) and denote the result of that subr 

stitution by VI. After trartsformation we find that the functional VL z VI ft3 

a9 a (t 4- 3, u (1 -f- ~1) is of the form (X,11] with some CoefficientsPi,, 

i = 1, 2, * . .$ 6. Considering VI as B function of arguments 8 and a, 

i. e. r: = ux (f, a>, where a = a (_Q7 we find that the derivative 
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is a certain functional 
t < T the equality 

is satisfied by co~t~ction, 
Let us, now, determine Us = us {t) 

control) so that condition 
(the second approximation of optimal 

min {Zi (i, U, U, CZ (t + T), U (t + P)) + u’Nl W U + (1.22) 
UER, 

U'N, (q a) = I, (t, 01, us (% a (t + z), 2-3 @ + PI) + 

us' (t) N, (t) u.2 ft) + a'Ns @I a 

is satisfied for any t, U, CG (t -k ‘r) and u (t -k P) 

It is seen from (1.22) thatus (t)satisfies relationships of the form (1.12), if in the 
latter us7 @a and Pi, (i = 1, 2, . . l , 6) are, respectively, substituted for func- 
tions Us, a and Pi and as = as (t) is the trajectory of system (1.8) that corres- 
ponds to control us. Thus us (t> is determined by an equation similar to (1.16) and, 
consequently, all results obtained for the control Ui (t), remain valid. 

Applying a similar procedure we determine the sequence of controls uk (t) = uk 

0, a, c1 (t + 5), u (t + p)) by relationships 

minWERt {$- vk-1 (t) -k u’Nl (t) U --k a’ (t) Nz (t) a (t)} = 
(1.23) 

$- Vk-1 (t) + ul: (t> NIV) Uk (t) + a’ (4 Na w a (4 

that are similar to (1.21) and (1.22). 

The sequences of functional Vk is the result of substi~~on into the right-hand si- 
de of (1.9) of expressions for uk (s) and ok (S), where ak @) is the solution of Eq. (1.8) 
for u (s) t= uk (s). As in the case of V,, and 4, we establish that vk is 
of the form (1.11) with certain coefficients pik (i = 1, 2, . . ., 6). Control uy (t) 
satisfies an equation of the form (1.12), if in the latter we Set UO * uk, c? = ak, and 

Pi = P’ - 1.k 1~ The coefficients of functionals uk, and 8, have the same propert- 
ies as the coefficients of first approximations and for all k the equality 

(1.24) 

& vk + UR) (t) N1 (t) Uk (t) -+ ak’ (t) N,(t) alt (t) = 0 

is valid in the sense of (1.21). 

Owing to the arbitrariness of the setting of the system trajectories and of control in 
intervaIs (t - hi, tl and (t - h, r) respectively, we obtain from (1.24) 
by the method of indeterminate coefficients, a system of linear equations in partial de- 
rivatives, which is satisfied by functions Pike The left-hand sides of these equations 
and the boundary conditions are of the form (1.13)-(1.15) in which Pir is substituted 
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for Pi and whose right-hand sides which can be represented as the product of matricesR 
~~-1 (t) Sare replaced by 

where 13, and Sk are binomials that correspond to A or b’ and are obtained by 
the substitution of jJiP for pi* 

The passing to limit k --f 00 in formulas (1.23) and (1.24) and in the system of 
differential equations in functions P+B is validated as in [S]. Hence the following the- 

orem is established. 

Theorem 1. If we assume that matrices g iit) and k ft) in (1.8), and NI (t) 
and Na (t) have piecewise cont~uo~ elements and B (t) are piecewise continuously 
differentiable, the solution of the problem of optimal control of system (1.8) with the 

quality criterion (1.9) is represented in the form (1.1.X), (1. IQ, and the coefficients 

of optimal functionals aa and &‘a represent the unique solution of the system of Eqs. 

(1.13)~(1.15). 
Note. When k (t) = 0 and h z 0 the statements of this theorem coincide wi- 

th the results presented in [8]. We should also point out that the successive approxima- 
tion Pih.9 used in the proof of the theorem may be taken as the approximate solution 
of problem (1.13)-(1,15), and it is possible to establish as in [15] that for some const- 

ant c 

II pi (1) - Pii; (t) ii < ci/il 

2. Ex a c t s 0111 ti ons. We present here formulas which provide the solution 
of the boundary value problems (1.13)-(1.15) on the additional ssumption that N, (t) 

and that matrices B (t) and k (t) are absolutely continuous. Note that when 
= Oh, (t) + 0 the problem (1.13)-( 1.15) is generally not integrable even for con- 

trolled systems without timelag, i. e. for systems (1.8) with h = h, = 0. 
We define matrix y (t) by the relationship 

y’ (t) = -y (E + hI) R (t + h,), 0 z:< t d I 

y(T) = I, y(s) GO, s> T 

where 1 is a unit matrix. 
A direct test will prove that problem (1. X3)-(1.15) has almost everywhere the fol- 

lowing solution: 
PI (Q = Y’ @) p (G Y (t) (2.1) 

P, (t, s) = y’ (t) P (t) y (t + h, + s) B (t + h, -i- 4 

Pa (t, s, sl) = 3’ (t + h, + s) y’ (t + h, + 4 P 0) y 0 -t k + 

s) B (t + h, + s) 

P* (t, r) = y’ (t) P (t> h-1 (t + r + h) 

Ps (t, s, r) = B’ (t + h, + s) y’ (t + h, + 4 P (t) h-1 (f -f- r .+ 4 

PI3 (t, r, rl) = k,’ (t + r + h) P (t) k, (t + r1 + 4 
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where 

y (t + r + h) k (t + r + h), t + r + h < min (T, r + h) 

0, t + r + h > min (T,] r + h) 

Moreover P (t) satisfies the Bernoulli matrix equation 

(t)G’ (t) P (t), J’ (T) = H 
P’ (t) = P V) G (t) Nr-’ 

y @I is w* T- h<t\<T 

G (t) = y (t> g (t) + y (t + h) k (t + h), 0 < t G * - h 

It can be verified that when H. > 0 

P (t) = [I + H f G (s) /VI-l (s) G’ (s) ds]-’ H 
t 

Note that solution (2.1) of problem (1.13)-( 1.15) was obtained for k (t) := 0 

in [IS], where the method of derivation of formula (2.1) is also described. 
3. The solution of the filtration problem derived above is based on its reduction 

by the use of the principle of duality to some problem of optimal control and the analy- 

sis of the latter. A similar algorithm is valid for problems of extra- and interpolation 
whose specific properties only appear in concrete form of the dual problem of optimal 
control. 

Let us first consider in detail the problem of extrapolation. It consists of the deriva- 

tion of the optimal estimate of process (1.1) at instant r > T on condition that along 

segment IO, T] the quantity (1.2) is observed. We denote by go (t) and ko (t) 

the functions that coincide, respectively, withg (t) and k (t) for 0 d t < T and 
are zero when r > T. 

Then we consider the subsidiary problem of filtration of vector f (‘G), which satisfies 

formulas (1.1) on the basis of observation of process YO (t), which is defined by Eq. (1.2) 
in which go (t) and k, (1) have been substituted for g (r) and k (t) Owing to the 
independence of x0, E1 and I& the solution of that subsidiary problem of filtration 

is also the solution of the extrapolation problem. Hence the double extrapolation of 
the optimal control problem is of the same form as in Sect. 1 with the substitution of z 

for F and go (t) and k. (t) forg (t) and k (t) respectively. Note, also, that the 

optimal control in this dual problem is zero when t > T owing to the definition of fun- 
ctions go and k,. 

Let us now turn to interpolation which consists of the optimal estimate of process (1. 

1) at instant r E 10, T) on the basis of observation Y (t) along the segment 

O<t\<T, where y (t! is defined by formulas (1.2). We consider the 
dual problem of optimal control of system 

(3.1) 
CZi’ (t) = --A’ (t) I& (t) --B’ (t + Ar) ei (t + IIJ -4. g’ (I + h,) Ui (t+ h,) + 

k’ (t + h,) ui (t + k3) - & (t - ~0) 
ui (s) = 0, ui (s) = 0, s > T 
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where 6i (lf is a vector whose i -th component is the delta function in zero, and 
the remaining are zero. Equation (3.1) is understood in the sense of the related integr- 
al identity. 

The minimizable functional J (Ui) is of the form (1.4). As in the case of (1.5), we 
conclude that the optimal estimate of the i, -th component of vector X (To) is 

T 

r 
6 

“I-(t)& ft) 

and 

To solve the problem of synthesis of (3. I) and (1.4) we reduce system (3. I) to a fo- 
rm similar to (1.8) 

(3.2) 

The optimal value of the functional in the problem (3.2), (I. 4) can be represented, 
as in the problem (I.. 8), (1.4), in the form Vr + V,, where VI has the form (1. 
X1) and V, is determined by the following linear relation in U and a 

(3.3) 
t-,=v,~t,a,a(t+i),u(ti-P~)=P7)(~~a~~)ta’~~~~~~,~~3- 

0 0 

1 P,*(t,s)a(t+s)dsi- 1 a’(f-ts)P,(t,s)ffs+ 

--ht -4 

0 

1 P,‘(t,r)u(t$r)dt$ 5 u’ (t t- r) Pg (t, r) dr -t- f’~ (f) 

-h e-n 

Similarly to (1.12) the optimal control may be written in 
where % is determined by formula (1.12) and 

uz (f) = -iP (W (Q p, (t) + p, (8, 0)I 

Functions pi, i = i, 8, 9 satisfy the equations 

p’, (t) + P, (t, 0) + P, (t) 6i (t - %I) = 
[PI (t) g (t) + P, (t, ow- (d [if 0) P7 (G + 

(3.4) 

(&-zig Pe(t,s)~P~(t,s)aift--r,f=I~,‘t~,sfgt~f+ 
P,(& s, O)] iv-‘(t) [g’(f) P,(t) + PoV, OH 

( a a 
-s--z ) Pp(t* r)+ Pr’(ttr)8i(t-T0)= 

[P“ (f, r) g (t) + Ps (t, r , O)J N-‘(t) Ig’ (t) P, (t) + PO (t I WI 

which are understood in the sense of an integral identity. 
Finally, Pro ($) is determined by formula 



t 

p,(t) = - p,’ (%) f&t - le,) + 5 t P?’ (s) g fs) + 

Pp’ (s, O)] N-l ($1 [g’ fs) P? (~1: P, is, 011 ds 

(3.5) 

where vector .fi (1 - z,) is zero when t + *XI; and when t = %I its 

i.- th component is equal unity and the remaining vanish. 

The boundary conditions for system (3.4) are of the form 

(3.6) 

p? (T) = P, (T, S) = P, jr, F) = 0 (- k, < S f 0, - h < i- < o> 

B’ (6 p, fff - P, ft, - h,f = 0 

k’ @f P7 (tf - P, ft, - hf = 0, 0 < d < T 

Relationships (3.4)-( 3.6) and (l-13)-( 1.15) constitute a closed system of equations 

that determine the synthesis of control in problem (3. l), (1.4) and, consequently, also 

the formulas of optimal interpolation. Similarly to the proof of Theorem 1 we establish 

that, when its requirements relative to coefficients of formulas (1.8) and (1.9) are satis- 

fied, the problem defined by (3.4)~(3.6) and (L,13)-(1.15) has a unique solution, 
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